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ABSTRACT
Representation learning in sequential recommendation is critical for
accuratelymodeling user interaction patterns and improving recom-
mendation precision. However, existing approaches predominantly
emphasize item-to-item transitions, often neglecting the time in-
tervals between interactions, which are closely related to behavior
pattern changes. Additionally, broader interaction attributes, such
as item frequency, are frequently overlooked. We found that both
sequences with more uniform time intervals and items with higher
frequency yield better prediction performance. Conversely, non-
uniform sequences exacerbate user interest drift and less-frequent
items are difficult to model due to sparse sampling, presenting
unique challenges inadequately addressed by current methods. In
this paper, we propose UniRec, a novel bidirectional enhancement
sequential recommendation method. UniRec leverages sequence
uniformity and item frequency to enhance performance, particu-
larly improving the representation of non-uniform sequences and
less-frequent items. These two branches mutually reinforce each
other, driving comprehensive performance optimization in complex
sequential recommendation scenarios. Additionally, we present a
multidimensional time module to further enhance adaptability. To
the best of our knowledge, UniRec is the first method to utilize the
characteristics of uniformity and frequency for feature augmenta-
tion. Comparing with eleven advanced models across four datasets,
we demonstrate that UniRec outperforms SOTA models signifi-
cantly. The code is available at https://github.com/Linxi000/UniRec.
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Figure 1: An example of uniform and non-uniform sequences
in a real dataset.
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1 INTRODUCTION
Sequential recommendation systems have become increasingly
prevalent due to their ability to effectively model user preferences
[40, 31, 10, 39]. Such systems utilize the sequential order of user
interactions over time to predict future interests [21, 36, 7]. Incor-
porating temporal information into these algorithms has proven
effective, as it provides significant insights into user behavioral
patterns [25, 45, 4, 9, 38, 6]. Current approaches primarily focus on
modeling explicit timestamps [25, 32] or capturing cyclic patterns
[4], but they often overlook time intervals, which reveal user char-
acteristics and convey critical information within user interaction
sequences. Yizhou Dang et al. propose that variations in the time
intervals between sequential interactions can serve as indicators
of shifts in user preferences [5]. Building on this premise, they
designed data augmentation operators to improve the uniformity
of sequences. However, this direction still lacks full study and holds
potential significance, as sequence uniformity is a common phe-
nomenon across various datasets. Additionally, the effectiveness of
a model in capturing item characteristics is influenced by the fre-
quency of these items. While considerable research has focused on
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enhancing the recommendation performance for long-tail items [22,
27], the utilization of item frequency to enhance model performance
remains an area requiring further exploration.

Figure 1 illustrates segments of the interaction of uniform se-
quence versus non-uniform sequences from different users, encom-
passing items of both high and low frequency. The "Ranking of
Uniformity" sorts interaction sequences by the variance of their
time intervals in ascending order, with lower percentages indicat-
ing greater uniformity. For example, U1 with a ranking of 19.1%
is more uniform than 80.9% of the sequences. "Item Popularity" is
defined as the proportion of an item’s occurrences relative to the
number of all interactions, thus quantifying the frequency of item
appearances within the dataset. This figure illustrates that time
intervals within uniform sequences are typically shorter and more
stable, indicating steadier user interests. In contrast, non-uniform
sequences exhibit more variable time intervals, reflecting more
frequent changes in user interests. Furthermore, the intensity of
the color within the circles signifies the model’s effectiveness in
learning the representations of the corresponding users or items,
with darker colors indicating higher effectiveness.

We first analyze the performance of sequences with different
intervals and item frequencies in section 2 and validate that se-
quences with higher uniformity and items with greater frequency
tend to exhibit better performance. Following this, we implement a
dual enhancement approach UniRec in section 3. For sequences, we
generate non-uniform subsets from uniform sequences by incor-
porating less-frequent items to simulate fluctuating user interests,
thereby enhancing the modeling of non-uniform sequence repre-
sentations later. For items, we train a neighbor aggregation mecha-
nism on frequent items and extend it to less-frequent items using
curriculum learning to improve their representations and transfer
this knowledge to sequence modeling. This dual-branch approach
is simple and effective, providing a new perspective for feature
enhancement in sequential recommendation. Additionally, we inte-
grate the temporal characteristics of both uniform and non-uniform
sequences to conduct multidimensional temporal modeling.

In summary, the contributions of this paper are as follows:

• Wepropose a novel dual enhancement architecture that lever-
ages sequence uniformity and item frequency. This archi-
tecture comprises two independent yet mutually reinforced
branches, collectively driving comprehensive performance
optimization.

• We improve the model’s ability to handle non-uniform se-
quences and less-frequent items and provide a new perspec-
tive for feature enhancement in sequential recommendation.

• We conduct extensive experiments on 4 real-world datasets,
demonstrating significant improvements over 11 competing
models, including 6 cutting-edge models that incorporate
temporal modeling in their sequential recommendation sys-
tems.

2 PRELIMINARY STUDY
In subsection 2.2, we demonstrate that uniform sequences and
frequent items consistently perform better across various datasets.
In subsection 2.3, we further validate this by demonstrating that,

Table 1: Performance of sequential recommendation models
on different subsets.

Dataset Strategy SASRec Bert4Rec LightSANs

NDCG Hit MRR NDCG Hit MRR NDCG Hit MRR

ML-1M

all 0.1584 0.3449 0.1058 0.1779 0.3770 0.1218 0.1779 0.3770 0.1218

If 0.1714 0.3707 0.1151 0.1923 0.4025 0.1331 0.1923 0.4025 0.1331
Il 0.0846 0.1980 0.0530 0.0958 0.2323 0.0573 0.0958 0.2323 0.0573

Impr. 102.6% 87.22% 117.17% 100.73% 73.27% 132.29% 100.73% 73.27% 132.29%

Su 0.1958 0.4145 0.1340 0.2171 0.4501 0.1511 0.2001 0.4222 0.1374
Sn 0.1024 0.2405 0.0636 0.1191 0.2674 0.0778 0.1030 0.2363 0.0658
Impr. 91.21% 72.35% 110.69% 82.28% 68.32% 94.22% 94.27% 78.67% 108.81%

Gowalla

all 0.1214 0.1950 0.0999 0.0982 0.1639 0.0791 0.1310 0.2090 0.1082

If 0.1502 0.241 0.1235 0.1207 0.1998 0.0977 0.1522 0.2406 0.1261
Il 0.0821 0.1376 0.0661 0.0490 0.0856 0.0384 0.0869 0.1436 0.0703

Impr. 82.95% 75.15% 86.84% 146.33% 133.41% 154.43% 75.14% 67.55% 79.37%

Su 0.1466 0.2341 0.1208 0.1215 0.2013 0.0983 0.1568 0.2503 0.1291
Sn 0.1026 0.1657 0.0842 0.0807 0.1360 0.0647 0.1118 0.1782 0.0925
Impr. 42.88% 41.28% 43.47% 50.56% 48.01% 51.93% 40.25% 40.46% 39.57%

regardless of the partitioning thresholds, uniformity and frequency
consistently lead to better performance.

2.1 Symbol Description
We distinguish the uniformity and non-uniformity of sequences
by adopting the classification method proposed by TiCoSeRec [5],
which evaluates and ranks all sequences by calculating the variance
of time intervals. Sequences with smaller variances are considered
more uniform. Based on this, sequences are divided into two sub-
sets: Su and Sn. The former includes sequences with consistent
time intervals, while the latter contains sequences with significant
fluctuations in intervals. Similarly, we rank each item based on
the frequency of its occurrence across all user interactions. De-
fine If as the set of frequently occurring items and Il as the set of
less-frequently occurring items.

2.2 Generality Analysis
2.2.1 Task. In this experiment, we aim to investigate the compara-
tive recommendation performance on uniform versus non-uniform
sequences as well as frequent versus less-frequent items, within the
context of different datasets. To achieve balance and fairness, we
ensured that subsets Su and Sn, as well as If and Il, were balanced
by equating the interaction numbers as much as possible. Following
this division criterion, we assigned "uniformity" and "frequency"
labels to each interaction sequence and item, recording the overall
evaluation results of the model and the experimental outcomes for
data with different labels.

2.2.2 Experimental Configuration. TiCoSeRec [5] has already demon-
strated on several Amazon datasets and Yelp that uniform sequences
significantly outperform non-uniform sequences. Here, we extend
these findings to both frequent and less-frequent items by testing on
two additional datasets, MovieLens 1M (ML-1M) [12] and Gowalla
[3]. The ML-1M dataset, a publicly available movie ratings database,
comprises 999,611 ratings from 6,040 users on 3,416 movies, with
a sparsity of 95.16%. The Gowalla dataset, representing check-in
data from a location-based social network, contains 6,442,892 check-
ins at 1,280,970 unique locations by 107,093 users, with a sparsity
of 99.99%. We utilized three classical sequential recommendation
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Figure 2: The performance of models under different subset
partition ratios, with the X-axis representing the percentage
of data classified as uniform and frequent.

baselines—SASRec [21], BERT4Rec [36], and LightSANs [7] for our
analysis. The evaluation metrics include Normalized Discounted
Cumulative Gain (NDCG), Hit Rate (HR), andMean Reciprocal Rank
(MRR) at top 20. The evaluation strategy employed is full ranking,
which involves evaluating the model on the entire set of items.

2.2.3 Results Analysis. Table 1 shows the performance of various
baselines across two datasets, comparing uniform and non-uniform
sequences, as well as frequent and less-frequent items. In the table,
"all" represents results tested on the entire dataset, while Su and
Sn, along with If and Il, represent results tested on these specific
subsets. The experimental results show that performance on sub-
sets Su and If is the best, also "all" exceed those on Sn and Il. For
the Gowalla dataset, the Bert4Rec model shows up to a 146.33%
improvement in NDCG@20 when predicting If instead of Il. Simi-
larly, LightSANs improves by up to 94.27% in NDCG@20 for the
ML-1M dataset when transitioning from Sn to Su. This phenom-
enon, where performance on If substantially exceeds that on Il,
corroborates the hypothesis that frequent items, benefiting from a
larger volume of interaction data, aremore predictable. Additionally,
models generally exhibit superior performance on Su compared to
Sn, suggesting that models more effectively learn from stable user
preferences present in uniform sequences.

2.3 Invariance Analysis
We further explore the impact of different partitioning ratios on
model performance using the ML-1M dataset. Specifically, we ana-
lyze the effects of varying the ratios for both Su and Sn and If and
Il using three classical baseline models.

Figure 2a displays the experimental results on Su and Sn. In this
figure, the "-1" suffix attached to each model indicates the perfor-
mance on the Su, whereas the "-0" suffix indicates the performance
on the Sn. Figure 2b presents the results on If and Il, where "-1"
and "-0" similarly denote the performance on If and Il, respectively.
The performance trends on MRR@20 and HR@20 are very similar
to those observed with NDCG@20.

The results indicate a noticeable decline in the performance of
sequential recommendation models as the partitioning thresholds
shift from uniform to non-uniform sequences and from frequent to
less-frequent items. This trend highlights the models’ sensitivity to
the variability in user behavior patterns and item frequencies.
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Figure 3: Overview framework of Item Enhancement (A), Se-
quence Enhancement (B), and Multidimensional Time Mod-
eling in Sequential Recommendation (C), using a uniform
sequence as an example.

3 METHODOLOGY
This section provides a detailed exposition of UniRec. First, we
address the dual enhancement architecture, which comprises the
sequences branch (subsection 3.2) and the items branch (subsec-
tion 3.3). Subsequently, a Multidimensional Time mixture attention
module (subsection 3.4) is designed to accommodate different uni-
formity sequences. Lastly, subsection 3.5 describes the inference
process of the model. Figure 3 illustrates the overall architecture of
the UniRec framework.

3.1 Problem Formulation
LetU denote the set of all users and I represent the set of all items.
For each user𝑢 ∈ U, we formulate the interactions in chronological
order, expressed as Ss-type

𝑢 = (𝑖 i-type1 , . . . , 𝑖
i-type
𝑡 , . . . , 𝑖

i-type
𝑁

). Here,
𝑖
i-type
𝑡 ∈ I specifies the item with which the user interacted at
timestamp 𝑡 . The term "s-type" distinguishes a sequence as uniform
or non-uniform, denoted as SU

𝑢 and SN
𝑢 ; "i-type" identifies an item

as frequent or less-frequent as 𝑖F𝑡 and 𝑖
L
𝑡 , respectively. 𝑁 signifies

the sequence length, which is fixed. For sequences shorter than
𝑁 , we employ the padding operation to fill the missing parts and
for those longer than 𝑁 we truncate the excess part. Define𝑀𝐼 ∈
RI×𝑑 as a learnable matrix of all items’ embedding, 𝑑 is a positive
integer denoting the latent dimension. By performing a lookup
table operation on𝑀𝐼 , we can retrieve every single item embedding
𝑚𝑖 ∈ R𝑑 , to form the user embedding ℎ𝑢 = [𝑚1, . . . ,𝑚𝑡 , . . . ,𝑚𝑁 ] ∈
R𝑁×𝑑 .
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3.2 Sequence Enhancement
Sequences with smaller variances are considered more uniform and
sequences are divided into two subsets: S𝑢 and S𝑛 . Each sequence
is classified based on a predefined time variance threshold into
either SU

𝑢 or SN
𝑢 , where SU

𝑢 ∈ S𝑢 and SN
𝑢 ∈ S𝑛 . Similarly, item is

categorized based on their frequency of occurrence in interactions
into 𝑖F𝑡 or 𝑖

L
𝑡 , where 𝑖

F
𝑡 ∈ If and 𝑖L𝑡 ∈ Il. For each uniform sequence

SU
𝑢 , we generate a corresponding non-uniform sub-sequence S′

𝑢

to emulate the irregular patterns observed in real-world datasets,
thereby enhancing the capability to model complex user behaviors.
The generation process retains all items from Il within SU

𝑢 , and if
the count of 𝑖L𝑡 ∈ SU

𝑢 is fewer than 𝑀 , additional 𝑖F𝑡 are randomly
sampled fromSU

𝑢 , where𝑀 is the hyper-parameter of the minimum
length of S′

𝑢 :

S′
𝑢 =


if count(SU

𝑢 , Il) < 𝑀 :
{𝑖L𝑡 : 𝑖L𝑡 ∈ SU

𝑢 } ∪ {Sampled 𝑖F𝑡 ∈ SU
𝑢 }

otherwise :
{𝑖L𝑡 : 𝑖L𝑡 ∈ SU

𝑢 }

(1)

the variance of time intervals increases from the sequence SU
𝑢 to

S′
𝑢 , and there is a substantial rise in the relative composition of 𝑖L𝑡

within S′
𝑢 .

We utilize SU
𝑢 to enhance the model’s learning capability with

respect to S′
𝑢 . First, we generate the initial embeddings for SU

𝑢

and S′
𝑢 , denoted as ℎ𝑈𝑢 ∈ R𝑁×𝑑 and ℎ′𝑢 ∈ R𝑁×𝑑 respectively. For

each sequence, we employ a sequence encoder 𝑓 (·), which is the
sequential recommendation modeling process:

𝑞𝑢 = 𝑓 (ℎ𝑈𝑢 ), 𝑞𝑢 = 𝑓 (ℎ′𝑢 ) (2)

where 𝑞𝑢 ∈ R𝑁×2𝑑 and 𝑞𝑢 ∈ R𝑁×2𝑑 are the representations for
SU
𝑢 and S′

𝑢 . The specifics of 𝑓 (·) will be detailed in subsection 3.4.
Next, the objective is to bring 𝑞𝑢 and 𝑞𝑢 as close as possible in the
feature space to enhance the model’s ability to handle the temporal
dynamics of non-uniform sequences, thereby minimizing 𝑥 through
a generative model 𝑮𝜃 , which consists of a feed-forward layer:

𝑥 = 𝑞𝑢 − 𝑮𝜃 (𝑞𝑢 ) (3)

Meanwhile, a curriculum learning strategy is adopted, which mim-
ics the human learning process: from simple to complex. This strat-
egy gradually increases the training samples’ complexity. Specifi-
cally, the model initially learns predominantly from more uniform
sequences, while sequences with more complex user interest drifts
are introduced later in the training. This process is managed with
a dynamically weighted loss function 𝜆𝑠 guiding the progression:

𝜆𝑠 = 𝑤𝑠 | |𝑥 | |2 (4)

𝑤𝑠 = sin
(
𝜋

2
· 𝑒 − 𝑒𝑏
𝑒𝑎𝑙𝑙

+ 𝜋
2
· 𝑉𝑚𝑎𝑥 −𝑉𝑢
𝑉𝑚𝑎𝑥 −𝑉𝑚𝑖𝑛

)
(5)

where 𝑤𝑠 represents a dynamic weight coefficient, 𝑒 denotes the
current epoch number, 𝑒𝑏 denotes the epoch at which this loss
function starts to contribute to the training process, and 𝑒𝑎𝑙𝑙 denotes
the total number of training epochs. For eachSU

𝑢 ∈ S𝑢 , the variance
of the time intervals is defined as 𝑉𝑢 . 𝑉𝑚𝑎𝑥 is the maximum time
interval variance among all sequences, while 𝑉𝑚𝑖𝑛 is the minimum.
This design allows𝑤𝑠 to dynamically change its value during the
training process based on the uniformity of sequences and phases of

training progress. This task serving as an auxiliary task, parallel to
the main task of sequential recommendation, specifically enhances
the model’s performance on S′

𝑢 , thereby implicitly improving the
model’s adaptability and prediction accuracy on S𝑛 .

3.3 Item Enhancement
Given that the generated S′

𝑢 are predominantly composed of 𝑖L𝑡 ,
together with a general prevalence of 𝑖L𝑡 in SN

𝑢 , enhancing model
performance on 𝑖L𝑡 has become critical. The proposed item enhance-
ment approach operates from two aspects: utilizing the information
from neighboring items and leveraging the knowledge transferred
from 𝑖F𝑡 to 𝑖

L
𝑡 . Leveraging neighbors for enhancement involves two

steps: candidate neighbor generation and representation aggrega-
tion.

Initially, the candidate neighbor generation process is conducted
for each item. For each center item 𝑖𝑐 ∈ I, a potential candidate
neighbor set N𝑖𝑐 is identified. A bunch of score 𝑠 (𝑖𝑐 , 𝑗) is calculated
for 𝑖𝑐 against every other item 𝑗 (where 𝑗 ∈ I \ {𝑖𝑐 }). These scores
are then ranked, and the items with higher scores are chosen to
constitute the neighbor set N𝑖𝑐 . 𝑠 (𝑖𝑐 , 𝑗) integrated three factors: the
temporal interval 𝑇 between 𝑖𝑐 and 𝑗 , the popularity 𝐻 of item 𝑗 ,
and the similarity 𝑆 between 𝑖𝑐 and 𝑗 . Both 𝐻 and 𝑆 are normalized
to ensure consistency in the scoring mechanism. 𝑠 (𝑖𝑐 , 𝑗) is defined
as:

𝑠 (𝑖𝑐 , 𝑗) = 𝑔(𝑇 ) + 𝜙 (𝑇,𝐻 ) + 𝜙 (𝑇, 𝑆) (6)

𝑔(𝑇 ) = 1
1 + log(1 +𝑇 ) (7)

𝜙 (𝑇, 𝑥) = 𝑇 + Θ

𝑒 (𝑇+Θ)/Γ𝑥 (8)

where Θ and Γ are constants, determined based on dataset specifics.
As 𝑇 increases, 𝑔(𝑇 ) gradually decreases. Similarly, an increase
in 𝑇 or a decrease in 𝑥 results in a lower value of 𝜙 (𝑇, 𝑥). This
scoring framework adeptly manages the temporal dynamics among
items, accounting for factors such as the popularity and similarity
of potential neighboring items. In each training batch, 𝐾 neighbors
are randomly sampled from N𝑖𝑐 , where 𝐾 is a hyper-parameter.

Then we aggregate these 𝐾 candidate neighbors to enhance 𝑖𝑐
with a simple attention mechanism. We generate the initial em-
bedding for 𝑖𝑐 , denoting as 𝑚𝑐 ∈ R𝑑 , as well as the embedding
𝑚𝑜 ∈ R𝑑 for these 𝐾 neighbors, 𝑜 ∈ {1, 2, . . . , 𝐾}. The aggregation
process is as follows:

𝑚𝑛 =

𝐾∑︁
𝑘=1

exp(𝑚𝑇𝑐𝑚𝑘 )∑𝐾
𝑗=1 exp(𝑚𝑇𝑐𝑚 𝑗 )

(9)

𝑚𝑛 represents the aggregated embedding from the neighbors. We
then concatenate𝑚𝑛 and𝑚𝑐 to form the updated representation
𝑚′
𝑐 = [𝑚𝑐 ∥ 𝑚𝑛] ∈ R2𝑑 , where | | denotes the concatenation opera-

tion. As a result,𝑚′
𝑐 contains more information related to 𝑖𝑐 than

𝑚𝑐 .
Meanwhile, to enable 𝑖L𝑡 ∈ Il to better utilize the related infor-

mation from N𝑖𝑐 , we transfer the knowledge learned from If on
neighbor aggregation representation to Il. Define the embedding of
𝑖F𝑡 obtained from𝑀𝐼 as𝑚𝐹𝑖 . Define the updated embedding𝑚′

𝑐 of 𝑖F𝑡
as𝑚′

𝑖𝐹
. We train the aggregation mechanism on 𝑖F𝑡 by minimizing

the following loss function:

S
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𝜆𝑓 = 𝑤𝑖 | |𝑚𝐹𝑖 − 𝑮𝜑 (𝑚′
𝑖𝐹
) | |2 (10)

𝑤𝑖 = sin
(
𝜋

2
· 𝑒 − 𝑒𝑏
𝑒𝑎𝑙𝑙

+ 𝜋
2
· 𝐹 − 𝐹𝑚𝑖𝑛
𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛

)
(11)

where 𝑮𝜑 is a fully connected layer that aligns the dimensions of
𝑚′
𝑖𝐹

and𝑚𝐹
𝑖
to be consistent. 𝑤𝑖 is a dynamic parameter used to

adjust the magnitude of the loss function across different items. 𝐹
represents the frequency score of the current item across all interac-
tions. 𝐹min is the minimum 𝐹 of 𝑖F𝑡 ∈ If, while 𝐹max is the maximum.
A curriculum learning strategy, analogous to the sequence branch,
is also employed. In the initial training phase, high-frequency items
are prioritized, with a gradual shift towards less-frequent items in
the later stages.

Finally, update the embeddings of all 𝑖L𝑡 after a certain epoch 𝑒𝑡
of training by minimizing the following loss:

𝜆𝑙 = 𝜂 | |𝑚𝐿𝑖 − 𝑮+
𝜑 (𝑚′

𝑖𝐿
) | |2 (12)

𝜂 = sin( 𝜋
2
· 𝑒 − 𝑒𝑡
𝑒𝑎𝑙𝑙

) (13)

where 𝑚𝐿
𝑖
is the representation of 𝑖L𝑡 obtained from 𝑀𝐼 , 𝑚′

𝑖𝐿
is

the updated representation 𝑚′
𝑐 of 𝑖L𝑡 , and 𝜂 is a parameter that

dynamically increases with the increase of the training epoch. 𝑮+
𝜑

represents the 𝑮𝜑 trained after (𝑒 − 𝑒𝑏 ) epochs and is static. By
refining 𝑖L𝑡 representation through the auxiliary task before the
main task training, the accuracy and performance of the model
concerning 𝑖L𝑡 are improved.

3.4 Multidimensional Time Modeling
Given the varying dependencies on temporal information, where
SU
𝑢 has a lower reliance on time and SN

𝑢 requires richer temporal
details, we propose a multidimensional time modeling module to
accommodate these differing needs. As demonstrated in subsection
4.6, utilizing time interval information is more effective for SU

𝑢 ,
while employing comprehensive temporal context proves more
effective forSN

𝑢 . Therefore, we design this module to better leverage
the appropriate temporal information.

For each S𝑢 we define its corresponding timestamp sequence
as T𝑢 = (𝑡1, 𝑡2, . . . , 𝑡𝑁 ). The corresponding time interval sequence
is defined as Tintv = (𝜏1, 𝜏2, . . . , 𝜏𝑁−1), where each 𝜏𝑘 = 𝑡𝑘+1 − 𝑡𝑘
denotes the interval between the 𝑘th and (𝑘+1)𝑡ℎ interactions. Each
𝜏𝑘 is encoded by an embedding matrix, resulting in a time interval
embedding 𝑣𝑘 ∈ R𝑑 . For temporal context modeling, we adopted
the approach proposed by Xu et al. [43], which specifically uses a
self-attention mechanism based on time representation learning,
and models temporal information such as year, month, and day
separately. Subsequently, this information is aggregated through a
linear layer to form the final temporal context embedding 𝑐𝑖 ∈ R𝑑
for each interaction 𝑖 . In a word, for each 𝑆𝑢 , we obtain its item
sequence embedding ℎ𝑢 ∈ R𝑁×𝑑 , along with the temporal context
representation 𝐶𝑡 = [𝑐1, 𝑐2, . . . , 𝑐𝑁 ] ∈ R𝑁×𝑑 , and the time interval
embeddings 𝑉𝑡 = [0, 𝑣1, 𝑣2, . . . , 𝑣𝑛−1] ∈ R𝑁×𝑑 , 0 represents a 1 × 𝑑
zero vector.

Next, recognizing that sequences with different uniformity re-
quire varying levels of temporal information, we integrate ℎ𝑢 with
𝐶𝑡 and 𝑉𝑡 respectively using a mixture attention mechanism. This
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Figure 4: Overview of inference phase.

serves as the sequence encoder 𝑓 (·), generating 𝑞𝑢 , the embedding
of the user𝑢’s interaction sequence, tailored to the specific needs of
each sequence. Integrate ℎ𝑢 with𝐶𝑡 and𝑉𝑡 in the same way, taking
the application of mixture attention on ℎ𝑢 and 𝐶𝑡 as an example.
First, concatenate ℎ𝑢 and 𝐶𝑡 to obtain the initial embedding of a
sequence as 𝑒𝑢 = ℎ𝑢 | |𝐶𝑡 . Next, we preprocess the input 𝑋 for mix-
ture attention, which is defined as 𝑋 = 𝑒𝑢 + 𝑃 , where 𝑃 ∈ R𝑁×2𝑑 is
the position encoding matrix. The mixture attention mechanism
can be mathematically described as:

MixATT(𝑋 ) = FFL(SAL(𝑋 )) (14)

FFL(𝑋 ) = ReLU(𝑋𝑊𝐹 + 𝑏𝐹 )𝑊𝐹 ′ + 𝑏𝐹 ′ (15)
SAL(𝑋 ) = Concat(𝐻1, . . . , 𝐻𝐻 ) (16)

where MixATT(𝑋 ) represents a composite model that integrates a
self-attention mechanism SAL(𝑋 ) and a feed-forward layer FFL(𝑋 ).
FFL involves two linear transformations with weight matrices𝑊𝐹

and𝑊𝐹 ′ , and bias terms 𝑏𝐹 and 𝑏𝐹 ′ . SAL combines the outputs
𝐻 𝑗 from each attention head 𝑗 ∈ {1, . . . , 𝐻 }. Each 𝐻 𝑗 is given by
softmax(𝐴 𝑗/

√︁
𝑑𝑉 )𝑊𝑂

𝑗
, where

√︁
𝑑𝑉 is a scaling factor to stabilize

learning, and𝑊𝑂
𝑗

is the output projection matrix for the 𝑗𝑡ℎ head.
𝐴 𝑗 is the attention score matrix proposed by Viet-Anh Tran et al.
[38], combining Gaussian distribution to mix two types of input
data. 𝐴 𝑗 =

∑
𝑘∈{𝑚,𝑐 } 𝑝𝑘 𝑗N(𝐴;𝑄𝑇

𝑘
, 𝜎2𝐼 ) is approximated by a mix-

ture model. The non-negative mixture weights 𝑝𝑘 𝑗 sum to one,
indicating the contribution of each context type. 𝑄𝑘 is obtained
by projecting the input context 𝑋𝑘 using matrix𝑊𝑘 . The Gaussian
distribution’s variance parameter is 𝜎2, and 𝐼 is the identity matrix.

The loss function for the recommendation task can be defined
as follows:

𝜆𝑟 = 𝑞𝑢𝑛
T
𝑖 (17)

where𝑞𝑢 is the output of the FFL and𝑛𝑖 = [𝑚𝑖 | |𝑐𝑖 ] is the embedding
of the next item to be predicted. Similarly, the mixture attention
mechanism is also applied to ℎ𝑢 and 𝑉𝑡 . The outputs processed
through the mixture attention mechanism, are mutually supervised
within a multi-task learning framework.

3.5 Inference Process
Figure 4 shows how the integrated components—IE (Item Enhance-
ment), SE (Sequence Enhancement), and 𝑓 (𝑢) (Sequential Recom-
mendation)—work together to provide robust and contextually rich
recommendations. For a given input sequence S𝑢 , we first deter-
mine whether it is SU

𝑢 or SN
𝑢 . SU

𝑢 is initialized with embedding 𝑒𝑈𝑢 ,
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Table 2: Performance comparison over four datasets. Numbers in bold indicate the best performance, those underlined denote
the second best, and numbers marked with an asterisk represent the third best. Models marked with † are data-augmented
methods based on SASRec.

Dataset Metric Non-Time-Aware Time-Aware

GRU4Rec Caser STAMP SASRec BERT4Rec LightSANs DuoRec† TiSASRec Meantime TiCoSeRec† FEARrec MOJITO UniRec

ML-1M
NDCG@10 0.5758 0.5447 0.5302 0.5801 0.5658 0.5671 0.5816 0.5849* 0.5804 0.5732 0.5515 0.5929 0.6261
HR@10 0.7856 0.7692 0.7444 0.8098* 0.7780 0.7719 0.7971 0.7893 0.8098* 0.7904 0.7594 0.8197 0.8347
MRR@10 0.5093 0.4751 0.4629 0.5149 0.4987 0.5021 0.5044 0.5205 0.5079 0.4967 0.4856 0.5157* 0.5613

Beauty
NDCG@10 0.3014 0.2805 0.2809 0.2944 0.3140 0.3349* 0.3123 0.2908 0.3201 0.3188 0.3382 0.3392 0.3693
HR@10 0.4593 0.4394 0.4225 0.4418 0.4629 0.5042* 0.4828 0.4323 0.4655 0.4862 0.4863 0.5087 0.5313
MRR@10 0.2525 0.2313 0.2372 0.2490 0.2682 0.2986 0.2733 0.2471 0.2753 0.2841 0.2922* 0.2865 0.3201

Books
NDCG@10 0.5811 0.5356 0.4816 0.6072 0.5616 0.6049 0.5942 0.6045 0.6073* 0.5875 0.5745 0.6171 0.6309
HR@10 0.7951 0.7674 0.7078 0.8216 0.7868 0.8176 0.8130 0.8218* 0.8169 0.8023 0.7994 0.8513 0.8617
MRR@10 0.5134 0.4626 0.4107 0.5394* 0.4905 0.5378 0.5325 0.5357 0.5135 0.5278 0.5036 0.5428 0.5752

Toys
NDCG@10 0.2779 0.2173 0.2446 0.3118 0.2327 0.3364 0.2794 0.3224 0.3187 0.2754 0.3121 0.3323* 0.3609
HR@10 0.4432 0.3752 0.3886 0.4626 0.3887 0.4934* 0.4643 0.4766 0.4762 0.4431 0.4655 0.5087 0.5260
MRR@10 0.2270 0.1688 0.2004 0.2652 0.1848 0.2877 0.2687 0.2747 0.2711 0.2421 0.2647 0.2775* 0.3103

while SN
𝑢 is initialized with 𝑒𝑁𝑢 . Within each SU

𝑢 , 𝑖F𝑡 are utilized to
train 𝑮𝜑 through the loss function 𝜆𝑓 in the IE module. Conversely,
for both SU

𝑢 and SN
𝑢 , 𝑖L𝑡 are updated based on the output from 𝑮+

𝜑

using the loss 𝜆𝑙 . After processing the sequence through 𝑓 (𝑢), we
train its embedding via the primary task loss 𝜆𝑟 . The sequence
embedding is then refined by the SE module to further enhance the
sequence representation using the loss 𝜆𝑠 . Finally, the sequence em-
bedding and the embedding of the item to be predicted are scored
by calculating their dot product.

4 EXPERIMENT
4.1 Experimental Settings
4.1.1 Datasets. In addition to the ML-1M [12] dataset used in sec-
tion 2, we also use datasets from e-commerce platforms, including
those for books, beauty products, and toys, as detailed below:

(1) The Amazon Book [13] dataset consists of 6,275,735 inter-
actions of users rating a book. This dataset includes 79,713
users and 91,465 books, with a density of 0.00086, indicating
the sparsity of user-item interactions.

(2) The Amazon Beauty [30] dataset comprises 198,502 inter-
actions involving 22,363 users and 12,101 beauty products,
with a density of 0.00073.

(3) The Amazon Toys [30] dataset includes 167,597 interactions
from 19,412 users and 11,924 toys, with a sparse density of
0.00072.

For each dataset, we adopt the k-core filtering [34] as a pre-
processing step, which iteratively removes users and items whose
interactions are fewer than 𝑘 , until each user and item in the dataset
has at least𝑘 interactions. Specifically, for theML-1M,we set𝑘item =

5 and𝑘user = 10; for the Beauty and Toy, we set𝑘item = 5 and𝑘user =
5; and for the Books, the settings are 𝑘user = 30 and 𝑘item = 20.

4.2 Evaluation Settings
We arrange the dataset in chronological order and allocate the last
item as the validation set and the penultimate item as the test set,

using the remaining data to construct the training set. To ensure fair
evaluation, for each positive item in the test set, we pair it with 100
negative items sampled uniformly, and the model’s performance is
assessed based on these pairs. We primarily utilize three metrics for
performance evaluation based on top-10 recommendation results:
NDCG, HR, and MRR. Specifically, NDCG assesses the ranking
quality of recommended items, HR measures the presence of at
least one relevant item, and MRR evaluates the rank of the top
relevant item.

4.2.1 Comparison Methods. We conduct a comprehensive com-
parison of UniRec with 11 baseline models. These include six clas-
sic sequential recommendation models: GRU4Rec [19], Caser [37],
STAMP [26], SASRec [21], BERT4Rec [36], and LightSANs [7]. Ad-
ditionally, we evaluate five time-aware models: TiSASRec [25],
Meantime [4], TiCoSeRec[5], FEARec [6], and MOJITO [38], all of
which leverage temporal information to improve performance.

4.2.2 Implementation Details. All models are trained for up to
200 epochs utilizing the Adam optimizer [23]. Early stopping is
implemented with a patience threshold of 20 epochs. We assign a
value of 64 to the parameter 𝑑 , utilize a batch size of 512, and set
the learning rate to 0.01. The length of the sequence is fixed at 50.
Both hyper-parameters𝑀 and 𝐾 are set to 3. The mixture attention
mechanism is configured with 2 heads. We test the partitioning
ratios for uniform and non-uniform users within the range of {0.3,
0.4, 0.5, 0.6, 0.7, 0.8}, and for frequent and less-frequent items within
the range of {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, across each dataset.

4.3 Overall Performance
Table 2 presents the experimental results of UniRec and 11 baselines
across four datasets, several conclusions can be drawn. First, time-
aware models generally outperform non-time-aware sequential
recommendation models across various datasets. This highlights
the critical importance of incorporating temporal dynamics into the
recommendation process, as it substantially enhances the relevance
and accuracy of the recommendations. Second, UniRec significantly
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Figure 5: Ablation performance with various enhancements across different subsets from ML-1M.

outperforms other comparative models across all datasets and eval-
uation metrics, confirming its effectiveness. The bidirectional en-
hancement strategy for sequences and items adopted by UniRec,
along with the multidimensional time modeling, greatly enhances
the precision inmodeling user interests and item characteristics. For
instance, on the ML-1M dataset, UniRec achieves improvements of
3.32% in NDCG@10 and 4.08% inMRR@10 compared to the existing
SOTA techniques. Third, UniRec demonstrates exceptional perfor-
mance across datasets with varying sparsity and scale, whether in
the lower-sparsity, smaller-scale ML-1M dataset or in the larger,
more sparse Amazon datasets. This proves its adaptability and ro-
bustness to different levels of sparsity and data sizes. For example,
on the Books dataset, UniRec increases MRR@10 by 3.24%, and on
the Beauty dataset, it raises NDCG@10 by 3.01%. Lastly, compared
to TiCoSeRec, which enhances data by improving sequence unifor-
mity, UniRec enhances the utilization of sequence uniformity by
incorporating item frequency more effectively. This demonstrates
the potential of enhancing sequential recommendations from both
perspectives of item frequency and sequence uniformity.

4.4 Ablation Experiment
To understand the impact of various components in our model,
we conduct an ablation study. We divide the model into the fol-
lowing parts for evaluation: Multidimensional Time Modeling (A),
Sequence Enhancement (B), Item Enhancement (C), and Item Popu-
larity & Similarity (D). Specifically, w/o A refers to the replacement
of multidimensional time modeling with a single-dimensional time
modeling structure, utilizing only time interval modeling and disre-
garding contextual time information. w/o B refers to removing the
sequence enhancement task, while w/o C refers to removing the
item enhancement task. w/o D refers to excluding the consideration
of item popularity and similarity in the item enhancement com-
ponent, instead selecting candidate neighbors based solely on the
time interval of the project. In addition to the overall dataset results,
we evaluate performance on several subsets: frequent-item, less-
frequent-item, uniform-sequence, and non-uniform-sequence. Us-
ing the ML-1M dataset as an example, Figure 5 shows the evaluation
results of SASRec, UniRec, and UniRec without several components
across various subsets.

First, UniRec demonstrates significant performance improve-
ments over SASRec across all strategies, particularly in the less-
frequent-item and non-uniform-sequence subsets. According to the
experimental data, UniRec shows a 9.2% improvement in MRR@10
over SASRec in the frequent-item subset and an 18.0% improvement
in the less-frequent-item subset. Additionally, in uniform and non-
uniform subsets, UniRec achieves a 2.1% and 4.3% improvement
in HR@10 over SASRec, respectively. These findings indicate that
UniRec excels in enhancing performance for less-frequent items
and non-uniform sequences.

Secondly, removing each component of the model results in vary-
ing degrees of performance degradation, indicating the importance
of each component to the overall model performance. Particularly,
w/o B leads to the most significant performance drop, particularly
reflected in the HR metric, highlighting the effectiveness of the
sequence enhancement module. This module not only improves
the uniformity of non-uniform sequences but also increases the
frequency of less-frequent items, significantly contributing to the
accuracy of user interest modeling.

Furthermore, the performance on the frequent-item subset and
uniform-sequence subset is consistent with the overall data. How-
ever, there are some differences between the less-frequent-item
subset and the non-uniform-sequence subset. In the less-frequent-
item subset, w/o A shows a significant drop in NDCG@10 and
MRR@10, indicating that temporal information has a substantial im-
pact on less-frequent items, as certain less-frequent items are more
likely to be interacted with during specific periods. The declines in
NDCG@10 and MRR@10 for w/o C and w/o D also demonstrate the
effectiveness of these components in modeling less-frequent items.
In particular, w/o D underscores the importance of considering
item popularity, similarity, and relevance in selecting candidate
neighbors to enhance less-frequent items’ representations. In the
non-uniform-sequence subset, the significant performance drop in
w/o B indicates that sequence enhancement indeed improves the
model’s capability to handle sequences with rich interest drifts.

In summary, Figure 5 clearly illustrates the contributions of each
component to the performance of UniRec, validating the necessity
and effectiveness of multidimensional time modeling, sequence
enhancement, item enhancement, and item popularity & similarity
in improving the model’s recommendation performance.
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Figure 6: Performance comparison using different partition
thresholds for item frequency and sequence uniformity on
the Beauty dataset.

Figure 7: Time sensitivity comparison of uniform and non-
uniform sequences onAmazon Sports andAmazon Industrial
datasets.

4.5 Hyperparameter Experiment
In this subsection, we explore the relationship between the perfor-
mance of UniRec and two hyperparameters: the item frequency
partition threshold and the user uniformity partition threshold. As
shown in Figure 6, we conduct experiments on the Amazon Beauty
dataset, testing the impact of item frequency partition thresholds
ranging from 40% to 90% (a), and sequence uniformity partition
thresholds ranging from 30% to 80% (b). The results indicate that all
tested partition thresholds yield good performance, but the most
significant improvement occurs at specific values. For the Beauty
dataset, the optimal split thresholds are 70% for high-frequency
items and 30% for less-frequent items, while the ratio of uniform to
non-uniform sequences is 60% to 40%. In summary, UniRec exhibits
robust performance across different threshold settings, yet care-
fully selecting division thresholds can enhance the performance
the most.

4.6 Time Sensitivity Analysis
As mentioned in section 3, we hypothesize that uniform sequences
and non-uniform sequences may exhibit different dependencies on
temporal information. In this subsection, to validate this hypothe-
sis, we compare the effects of coarse-grained time modeling and
fine-grained time modeling on both uniform and non-uniform se-
quence subsets. As shown in Figure 7, a positive score indicates that
coarse-grained modeling outperforms fine-grained modeling, while
the negative indicates the opposite. In both Amazon datasets, we
observe that coarse-grained modeling performs better on uniform-
sequence subsets, whereas fine-grained modeling is more effective

SASRec Score: -1.1573 SR Module Score: 2.6451

IE Module Score: 4.4106SE Module Score: 6.0904

User  
ID 2481

Next 
 Item ID 

291

?

Figure 8: Prediction scores and corresponding sequence em-
bedding heatmaps of a non-uniform sequence across differ-
ent models and modules.

on non-uniform-sequence subsets. For uniform sequences, user be-
havior patterns are more consistent, capturing global patterns can
yield satisfactory predictive outcomes. Conversely, non-uniform
sequences exhibit greater diversity and dynamism in user behavior,
necessitating a fine-grained temporal encoding strategy to accu-
rately model shifts and changes in user interests.

4.7 Case Study
We conduct a case study to illustrate the progressive enhancement
of a non-uniform sequence through various models and modules.
As shown in Figure 8, we select a non-uniform sequence (user ID
2481) and demonstrate the changes in prediction scores for the next
item (item ID 291) and the corresponding sequence embeddings
after modeling with four different approaches: SASRec, SR module
of UniRec, both the SR and IE modules, and the SR, IE, and SE mod-
ules. The progression of the model incorporating more modules is
indicated by the arrows in the figure. SASRec shows a low predic-
tion score, indicating its limited capability in handling sequences
with significant interest drift. Adding the SR module significantly
improves the model’s predictive ability. The inclusion of the IE mod-
ule brings further improvement, and the model achieves its best
performance with the addition of the SE module. In the heatmaps,
blue indicates larger positive values and green indicates smaller
negative values. The transition in heatmap colors from SASRec
to the enhanced models, with increasing contrast, demonstrates
the model’s growing ability to capture detailed information and
features from various positions within the sequence.

5 RELATEDWORKS
5.1 Sequential Recommendation
Sequential recommendation systems identify patterns in user be-
havior to predict future actions. Initially, Markov models [33, 20]
are pivotal for analyzing transitions between states. The rise of
deep learning leads to RNN models like GRU4Rec [19], which im-
proves predictions by capturing long-term dependencies [14, 15, 16].
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Convolutional Neural Network (CNN [24])-based models, such as
Caser [37], improves recommendations by examining local behavior
sequence patterns. Models like SHAN [35] and STAMP [26] effec-
tively address shifts in user interests through memory strategies.
Recently, attention mechanisms and Transformer-based models,
like SASRec [21] and Bert4Rec [36], have gained prominence. They
leverage self-attention to understand complex sequence depen-
dencies, while LightSANs [7] introduces lightweight self-attention
structures. The SSE-PT [41] integrates personalized embeddings
with Stochastic Shared Embeddings (SSE) [42]. Research also ex-
tends to cross-domain [49, 1, 11], interpretable [48, 18], graph neural
network [17, 46, 2, 29], and contrastive learning approaches [28, 47,
44, 5] for sequential recommendations.

5.2 Time-Aware Sequential Recommendation
Time-aware systems incorporate timing to capture the dynamic
nature of user preferences, offering more accurate and timely rec-
ommendations. These models surpass traditional ones by adapt-
ing recommendations to both the shifts in user preferences over
time and their current interests [45, 8]. The TiSASRec [25] model
innovatively adjusts self-attention weights based on the timing be-
tween actions, significantly improving performance. MEANTIME
[4] enriches time perception through diverse embedding techniques,
whereas TASER [45] explores both absolute and relative time pat-
terns. TGSRec [9] considers temporal dynamics in sequence pat-
terns, andMOJITO [38] analyzes preferences from various temporal
perspectives through a hybrid self-attention mechanism. FEARec
[6] transitions sequence analysis from the time to the frequency
domain, employing a hybrid attention mechanism and multitask
learning for enhanced performance.

While these models ingeniously integrate temporal information,
optimizing the use of such data remains a challenge. The diver-
sity of data characteristics necessitates adaptable approaches for
handling time intervals, timestamps, and cyclic patterns, given the
varied and often irregular temporal behavior patterns among users.
Recently, the TiCoSeRec [5] introduces an innovative approach by
considering sequence uniformity during the data augmentation
phase, marking a deeper understanding of sequential recommenda-
tion data. While this model treats sequence uniformity as a target
of data enhancement, it does not delve into modeling and analyzing
this characteristic of the data further. In contrast, in this paper,
we incorporate sequence uniformity into model construction. Our
method not only addresses the limitations encountered by existing
models when dealing with data of varied temporal distributions
but also proposes a novel perspective for feature enhancement.

6 CONCLUSION
In this paper, we demonstrate that sequential recommendation al-
gorithms perform better on uniform sequences and frequent items
compared to non-uniform sequences and less-frequent items. To
address this, we present a novel bidirectional enhancement archi-
tecture that leverages sequence uniformity and item frequency for
feature enhancement, optimizing the performance of sequential
recommendations. Additionally, we introduce a multidimensional
time modeling method to better capture temporal information. Ex-
perimental results show that our method significantly outperforms

twelve competitive models across four real-world datasets. To the
best of our knowledge, this is the first work that utilizes the unifor-
mity of sequences and frequency of items to enhance recommenda-
tion performance and it also indicates a promising direction and a
new perspective for feature enhancement in future research.
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